PVP 20

Code: 20BS1101

I B.Tech - I Semester - Regular Examinations - JULY 2021

CALCULUS AND LINEAR ALGEBRA

(Common for CIVIL, EEE, ME, ECE, CSE, IT)
Duration: 3 hours
Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

UNIT - I

1.

a) Find the rank of the matrix $A=\left[\begin{array}{cccc}11 & 3 & 4 & 5 \\ 1 & 2 & 6 & 7 \\ 1 & 5 & 0 & 10\end{array}\right] \quad$ by reducing into Normal form.
b) Show that the equations $3 x+4 y+5 z=a$, $4 x+5 y+6 z=b, 5 x+6 y+7 z=c$ does not have a solution unless $a+c=2 b$.
2.
a) Reduce the matrix $\left[\begin{array}{llll}1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 5 & 4\end{array}\right]$ into Echelon form and hence find its rank.
b) Solve the following system of linear equations $x+3 y+2 z=0,2 x-y+3 z=0,3 x-5 y+4 z=0, x+17 y+4 z=0 \quad 7 \mathrm{M}$

UNIT - II

3. Find the Eigen values and Eigen Vectors of

$$
A=\left[\begin{array}{ccc}
2 & 3 & -2 \\
-2 & 1 & 1 \\
1 & 0 & 2
\end{array}\right] .
$$

OR

4. a) Verify the Cayley- Hamilton theorem for the matrix
$\mathrm{A}=\left[\begin{array}{ccc}1 & \sqrt{2} & 0 \\ \sqrt{2} & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and find its inverse by using this theorem.
b) Prove that zero is the eigen value of a matrix if and only if the matrix is singular.

UNIT-III

5. a) Verify the Rolle's theorem for the function $f(x)=(x-a)^{m}(x-b)^{n}$ in $[a, b]$
b) Apply mean value theorem, show that

$$
\frac{\pi}{4}+\frac{3}{25}<\operatorname{Tan}^{-1} \frac{4}{3}<\frac{\pi}{4}+\frac{1}{6} .
$$

OR
6.
a) Verify Cauchy's Mean value theorem for $\mathrm{f}(\mathrm{x})=\frac{x^{3}}{4}-4 x$ and $g(x)=x^{2}$ in $[0,3]$.
b) Obtain the Maclaurin's series expansion of $f(x)=\cos x$.

UNIT - IV

7. a) If $u=x+y+z$, $u v=y+z$, $u v w=z$ then, prove that

$$
\frac{\partial(x, y, z)}{\partial(u, v, w)}=\mathrm{u}^{2} \mathrm{v} .
$$

b) Examine for minimum and maximum values of $\sin x+\sin y+\sin (x+y)$.

OR

8. a) Find the extreme values of $x^{3}+y^{3}-3 a x y$, where a >0.
b) Show that rectangular solid of maximum volume that can be inscribed in a given sphere is cube.

UNIT - V

9. a) Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}}\left(x^{2}+y^{2}\right) d y d x$.
b) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{x}} \int_{0}^{\sqrt{x y}} x y z d z d y d x$

OR

10. a) Evaluate $\int_{-a}^{a} \int_{-b}^{b} \int_{-c}^{c}\left(x^{2}+y^{2}+z^{2}\right) \mathrm{dx} \mathrm{dy} \mathrm{dz}$.
b) By using double integrals find the area between the parabolas $y^{2}=4 a x$ and $x^{2}=4 \mathrm{ay}$.
